Ulyanov-type Inequalities Between Lorentz–Zygmund Spaces
نویسندگان
چکیده
منابع مشابه
Kantorovich type inequalities for ordered linear spaces
In this paper Kantorovich type inequalities are derived for linear spaces endowed with bilinear operations ◦1 and ◦2. Sufficient conditions are found for vector-valued maps Φ and Ψ and vectors x and y under which the inequality Φ(x) ◦2 Φ(y) ≤ C + c 2 √ Cc Ψ(x ◦1 y) is satisfied. Complementary inequalities are also given. Some results of Dragomir [J. Inequal. Pure Appl. Math., 5 (3), Art. 76, 20...
متن کاملPoincaré–type Inequalities for Broken Sobolev Spaces
We present two versions of general Poincaré–type inequalities for functions in broken Sobolev spaces, providing bounds for the Lq–norm of a function in terms of its broken H1–norm.
متن کاملUl’yanov–type Inequalities and Embeddings between Besov Spaces: the Case of Parameters with Limit Values
In this paper we obtain some limit cases of inequalities of Ul’yanov-type for modulus of smoothness between Lorentz-Zygmund spaces on Tn . Corresponding embedding theorems for the Besov spaces are investigated. Mathematics subject classification (2010): 41A17, 46E30, 46E35, 46M35.
متن کاملGagliardo-nirenberg Type Inequalities in Some Q−spaces
Abstract. In this paper, from a John-Nirenberg (JN) type inequality in BMO(R), we prove Gagliardo-Nirenberg (GN) type inequalities in Qα(R ) which mean the continuous embeddings L(R)∩Qα(R ) ⊆ L(R) for −∞ < α < β, 1/2 < β ≤ 1 and 2 ≤ r ≤ p < ∞. This result generalizes some known embeddings and implies the bilinear estimates in BMO(R) which are useful for studying Navier-Stokes equations. Meanwhi...
متن کاملSome Grüss Type Inequalities in Inner Product Spaces
Some new Grüss type inequalities in inner product spaces and applications for integrals are given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Fourier Analysis and Applications
سال: 2014
ISSN: 1069-5869,1531-5851
DOI: 10.1007/s00041-014-9343-4